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Abstract. In nonideal classical plasmas, the electron captures by positrons from hydrogenic ions are inves-
tigated. An effective pseudopotential model taking into account the plasma screening effects and collective
effects is applied to describe the interaction potential in nonideal plasmas. The classical Bohr-Lindhard
model has been applied to obtain the electron capture radius and electron capture probability. The modified
hyperbolic trajectory method is applied to the motion of the projectile positron in order to visualize the
electron capture probability as a function of the impact parameter, nonideal plasma parameter, projectile
velocity, and plasma parameters. The results show that the electron capture probability in nonideal plas-
mas is always greater than that in ideal plasmas descried by the Debye-Hückel potential, i.e., the collective
effect increases the electron capture probability. It is also found that the collective effect is decreased with
increasing the projectile velocity.

PACS. 52.20.-j Elementary processes in plasma

1 Introduction

Electron capture process in atom-charged particle colli-
sions has been of great interest since this process is one
of the basic processes in atomic collision physics [1]. The
electron capture processes have been investigated widely
using various methods [2–6] depend on the state of the
projectile and target system. Collision processes involv-
ing the positrons and electrons have received many at-
tentions since theses processes have many applications
in atomic, plasma physics, and astrophysics. Especially,
the annihilation of positrons has been widely investigated
in astrophysical plasmas [7–9]. The theoretical investiga-
tions for positron-electron direct annihilation and positron
formation also have been widely performed. Recently, in
weakly coupled ideal plasmas, the electron capture by
positron from target atom was investigated using the
Bohr-Lindhard (BL) model with the Debye-Hückel poten-
tial [10]. When the relative interaction velocity vP of the
projectile is greater than the ground state orbital velocity
υZ (= Ze2/~) of the hydrogenic ion with nuclear charge
Z, i.e., intermediate and high energy projectiles, the clas-
sical BL model has been known to be quite reliable since
the de Broglie wave length of the projectile is smaller than
the collision diameter for the capture interaction [3,4]. The
Debye-Hückel effective potential describes the properties
of a low density plasma and corresponds to a pair correla-
tion approximation. The plasmas descried by the Debye-
Hückel model can be called the ideal plasmas since the

a e-mail: yjung@bohr.hanyang.ac.kr

average energy of interaction between particles is small
compared to the average kinetic energy of a particle [11].
However, multiparticle correlation effects caused by simul-
taneous interaction of many particles should be taken into
account with increasing the plasma density. It is necessary
to take into account not only short-range collective effects
but also long range effects in the case of a plasma with a
moderate density and temperature. In this case, the inter-
action potential cannot be described by the Debye-Hückel
model because of the strong collective effects of nonideal
particle interaction [12]. Then, the electron capture prob-
ability by the positron projectile from the hydrogenic ion
target in nonideal plasmas would be different from that in
ideal plasmas. Thus, in this paper we investigate electron
capture processes in positron-hydrogenic ion collisions in
nonideal plasmas. A pseudopotential model including the
plasma screening effects and collective effects is applied
to describe the interaction potential between the projec-
tile positron and the target ion in nonideal plasmas. The
classical BL model has been applied to obtain the elec-
tron capture radius and electron capture probability. The
modified hyperbolic trajectory method is applied to the
motion of the projectile positron in order to visualize
the electron capture probability as a function of the im-
pact parameter, nonideal plasma parameter, projectile ve-
locity, and plasma parameters.

In Section 2, we derive the electron capture radius
and electron capture cross-section by positrons from hy-
drogenic ions in nonideal plasmas using the BL model
and the modified hyperbolic orbit trajectory method with
the pseudopotential model including the plasma screening
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effects and collective effects. In Section 3, we obtain the
scaled electron capture probability as a function of the
impact parameter, nonideal plasma parameter, projectile
velocity, and plasma parameters. We also investigate the
variation of the scaled electron capture probability with
changing the scaled modified impact parameter. The re-
sults show that the electron capture probability in non-
ideal plasmas is found to be always greater than that in
ideal plasmas, i.e., the collective effect increases the elec-
tron capture probability. It is also found that the collective
effect is decreased with increasing the velocity of the pro-
jectile positron. Finally, in Section 4, a discussion is given.

2 Electron capture cross-section

Using the classical trajectory method, the electron capture
cross-section can be given by [5]

σC = 2π
∫

db b Pc(b), (1)

where b is the impact parameter and Pc(b) is the electron
capture probability. In the BL model, the electron cap-
ture process happens when the distance between the pro-
jectile and a released electron is smaller than the electron
capture radius Rc [2–4]. This electron capture radius is
determined by equating the kinetic energy of the released
electron in the frame of the projectile and the binding en-
ergy provided by the projectile. In the classical BL model,
the electron capture probability is defined by the ratio of
the collision time to the electron orbital time

Pc(b) =
∫ tc

−tc

dt
τ
, (2)

where t = 0 is arbitrary chosen as the instant at which
the projectile positron makes its closest approach to the
target ion and tc is the electron capture time within the
electron capture radius. Here, the electron orbital time τ
in the ground state of the hydrogenic ion with nuclear
charge Z is given by

τ = aZ/υZ , (3)

where aZ (= a0/Z = ~2/me2Z2) is the first Bohr radius.
For intermediate and high projectile velocities υP ≥ υZ ,
this classical expression of the electron capture cross-
section (Eq. (1)) is known to be valid [3,4].

In a recent paper [12], an integro-differential equation
for the effective potential of the particle interaction tak-
ing into account the simultaneous correlations of N par-
ticles was obtained on the basis of a sequential solution
of the chain of Bogolyubov equations for the equilibrium
distribution function of particles of a classical nonideal
plasma and an analytic expression for the pseudopoten-
tial of the particle interaction in a nonideal plasmas was
also obtained by application of the spline-approximation.
Using the pseudopotential taking into account the plasma

screening effects and collective effects, the interaction
potential V (r) between the projectile positron and the
target ion with charge Z in nonideal plasmas can be rep-
resented by

V (r) =
Ze2

r
e−r/Λ

1 + γf(r)/2
1 + c(γ)

, (4)

where r is the position vector of the projectile positron
from the target ion, Λ is the Debye length,

f(r) = (e−
√
γr/Λ − 1)(1− e−2r/Λ)/5

and γ (≡ e2/ΛkTe) is the nonideal plasma parameter,

c(γ) ∼= −0.008617+ 0.455861γ− 0.108389γ2 + 0.009377γ3

is the correlation coefficient for different values of γ,
and Te is the electron temperature. When γ � 1, i.e.,
weakly nonideal or rare ideal plasmas, the pseudopoten-
tial (Eq. (4)) goes over into the Debye-Hückel potential
V (r) → (Ze2/r)e−r/Λ. Using this pseudopotential, the
electron capture radius Rc in nonideal plasmas can be
obtained by

e2

Rc
e−Rc/Λ

1 + γf(Rc)/2
1 + c(γ)

∼=
1
2
µυ2

P, (5)

since the kinetic energy of the released electron in the
frame of the projectile positron has to be smaller than the
binding energy provided by the projectile positron, where
µ (= m/2) is the reduced mass and m is the electron
mass. After some algebra using the perturbation calcula-
tion since the electron capture radius Rc is usually smaller
than the Debye length Λ, the electron capture radius in-
cluding the plasmas screening effect and collective effect
is found to be

Rc

Λ
∼= R0/Λ

1 +R0/Λ+ c(γ)
+
(
R0

Λ

)3 (1/2− γ3/2/5)
[1 +R0/Λ+ c(γ)]3

,

(6)

where R0 ≡ 4e2/mυ2
P.

For projectiles such as electrons and positrons rather
than heavy nuclei, the curved trajectory method must be
applied to describe the projectile motion in Coulomb fields
because of the small mass ratios (m/M � 1). For positron
projectiles, the useful parametric representation [13] of the
hyperbolic orbit trajectory for r(t) in x-y plane is given by

x = d (ε2 − 1)1/2 sinhw,
y = d (coshw − ε),

r(t) ≡ |r(t)| = d(ε coshw + 1),

t =
d

υP
(ε sinhw + w), −∞ < w <∞ (7)

where d and ε are half of the distance of closest approach
in a head-on collision and the eccentricity, respectively. In-
cluding the plasma screening effects and collective effects,
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the parameters d and ε are given by

d

Λ
∼= d0/Λ

1 + d0/Λ+ c(γ)
+
(
d0

Λ

)3 (1/2− γ3/2/5)
[1 + d0/Λ+ c(γ)]3

, (8)

ε = (1 + b2/d2)1/2, (9)

where d0 ≡ Zeffe
2/mυ2

P and Zeff is the effective charge of
the target ion seen by the projectile positron, for example,
Zeff = Z − 5/16 for one-electron atoms. The hyperbolic
orbit trajectory method has been widely used to investi-
gate the electron-ion collisional impact excitation [14,15]
and bremsstrahlung [16] processes. Using equations (2, 7),
the electron capture probability using the hyperbolic orbit
trajectory method is given by

Pc(b) =
2d
τυP

(ε sinhwc + wc), (10)

where the parameter wc is determined by the electron cap-
ture time tc:

wc = ln

{
(Rc/d− 1)

(1 + b2/d2)1/2
+
[

(Rc/d− 1)2

(1 + b2/d2)
− 1
]1/2

}
.

(11)

From equation (11), the maximum impact parameter bmax

is given by (R2
c−2Rcd)1/2. However, this is physically un-

reasonable since the electron capture process is also possi-
ble in the region (R2

c − 2Rcd)1/2 ≤ b ≤ Rc. Thus, we have
to modify the impact parameter in order to obtain the
correct electron capture probability and electron capture
cross-section. In the Bohr-Lindhard model, the electron
release radius Rr is taken to be that the initial electron
energy should be equal to the height of the electrostatic
potential barrier given by the total potential energy acting
on the electron. For collisions between the projectile ion
with charge z and hydrogenic ion target with charge Z,
the electron release radius Rr is given by 2(1+2

√
z/Z)aZ ,

which is the independent of the projectile velocity. When
Rc > Rr, i.e., low velocities, the electron capture cross-
section is geometrical with the maximum of the cross-
section σC = πR2

r [17]. For high velocities, the electron
capture process only happens when the distance between
the projectile and a release electron is smaller than the
electron capture radius Rc [4]. Physically, the maximum
impact parameter should be equal to the electron capture
radius Rc since the electron capture probability has been
defined by the electron capture time. Since the electron
capture process is only proceeded within the electron cap-
ture sphere with the radius Rc, after some straightforward
manipulations, the modified impact parameter b′ can be
obtained by the shortest distance from the tangent [16] at
the position [x(wc), y(wc)]:

b′ = d(ε2 − 1)1/2

(
ε coshwc + 1
ε coshwc − 1

)1/2

, (12a)

= b(1− 2d/Rc)−1/2. (12b)

From equations (11, 12b), we can readily show that the
modified maximum impact parameter becomes b′max = Rc.

For b′ > Rc, the trajectory of the projectile would be
a straight line since the capture probability is zero for
t > |tc|. However, for b′ ≤ Rc, i.e., t ≤ |tc|, the trajectory
of the projectile would be then the screened hyperbolic
orbit. Hence, our modification on the impact parameter is
quite reliable and can be applied to investigate the elec-
tron capture probability.

3 Electron capture probability

From equations (10, 11, 12b), the electron capture prob-
ability as a function of the modified impact parameter is
given by

Pc(b′) =
2d
τυP

{[
Rc

d

(
Rc

d
− 2
)(

1− b′2

R2
c

)]1/2

− 1
2

ln

[
1 +

Rc

d

(
Rc

d
− 2
)
b′2

R2
c

]

+ ln

[(
Rc

d
− 1
)

+

[
Rc

d

(
Rc

d
− 2
)(

1− b′2

R2
c

)]1/2]}
.

(13)

Then, the electron capture cross-section (Eq. (1)) can be
rewritten as

σC = 2πR2
c

∫
db̃′ b̃′ Pc(b̃′), (14)

where b̃′ (≡ b′/Rc) the scaled modified impact parameter.
Thus, the scaled differential electron capture cross-section
in units of πR2

c becomes

dσC/db̃′

πR2
c

= 2b̃′Pc(b̃′) (15a)

= 2
(

2Rc

τυP

)
b̃′P̃c(b̃′, Rc/d). (15b)

Here, b̃′P̃c(b̃′, Rc/d) is the scaled electron capture proba-
bility including the plasma screening effects and collective
effects through the radio Rc/d (Eqs. (6, 8)).

In order to investigate the plasma screening effects and
collective effects on the electron capture probability by the
positron projectile we consider the two cases of the pro-
jectile velocity υP/υZ = 1 and 3 since the classical BL
model is known to be valid for intermediate and high en-
ergy projectiles [3,4] and we choose aΛ = 0.1 and γ = 1.
Figures 1 and 2 show the scaled electron capture proba-
bilities b̃′P̃c(b̃′, Rc/d) by the positron projectile from the
hydrogenic ion target with nuclear charge Z = 2 as func-
tions of the scaled impact parameter including the plasma
screening effects and collective effects for υP/υZ = 1 and 3,
respectively. As we can see in these figures, the electron
capture probability in nonideal plasmas (γ = 1) described
by the pseudopotential is always greater than that in ideal
plasmas (γ = 0) descried by the Debye-Hückel potential.
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Fig. 1. The scaled electron capture probability b̃′P̃c(b̃′, Rc/d)
by the positron from the hydrogenic ion with nuclear charge
Z = 2 as a function of the scaled impact parameter b̃′ (≡ b′/Rc)
for aΛ = 0.1 and υP/υZ = 1. The solid line represents the elec-
tron capture probability in ideal plasmas, i.e., γ = 0. The dot-
ted line represents the electron capture probability in nonideal
plasmas with γ = 1.

Thus, it is found that the nonideality (γ 6= 0) of plasmas,
i.e., the collective effect, increases the electron capture
probability. It is also found that the collective effect is
decreased with increasing the projectile velocity.

4 Discussion

We investigate the plasma screening effects and collec-
tive effects on the electron captures by positrons from
hydrogenic ions in nonideal classical plasmas. An effec-
tive pseudopotential model taking into account the plasma
screening effects and collective effects is applied to de-
scribe the interaction potential in nonideal plasmas. The
classical Bohr-Lindhard model has been applied to obtain
the electron capture radius and electron capture proba-
bility using the modified hyperbolic trajectory method.
The scaled electron capture probability by positrons from
hydrogenic ions is obtained as a function of the impact
parameter, nonideal plasma parameter, projectile veloc-
ity, and plasma parameters. It is found that the electron
capture probability in nonideal plasmas is always greater
than that in ideal plasmas descried by the Debye-Hückel
potential, i.e., the collective effect increases the capture
probability. It is important to note that the collective ef-
fect is decreased with increasing the velocity of the pro-
jectile positron. These results provide a useful information
of the electron capture processes by positrons from target
ions in nonideal classical plasmas.
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Fig. 2. The scaled electron capture probability b̃′P̃c(b̃′, Rc/d)
by the positron from the hydrogenic ion with nuclear charge
Z = 2 as a function of the scaled impact parameter b̃′ (≡
b′/Rc) for aΛ = 0.1 and υP/υZ = 3. The solid line represents
the electron capture probability in ideal plasmas, i.e., γ = 0.
The dotted line represents the electron capture probability in
nonideal plasmas with γ = 1.
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